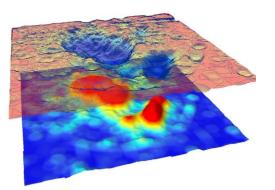


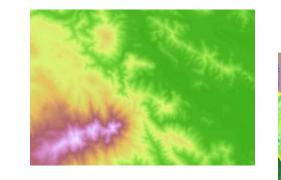
Co-funded by the Erasmus+ Programme of the European Union ClimEd Project "Multilevel Local, Nationand Regionwide Education and Training in Climate Services, Climate Change Adaptation and Mitigation"

GIS Applications in Climate Services

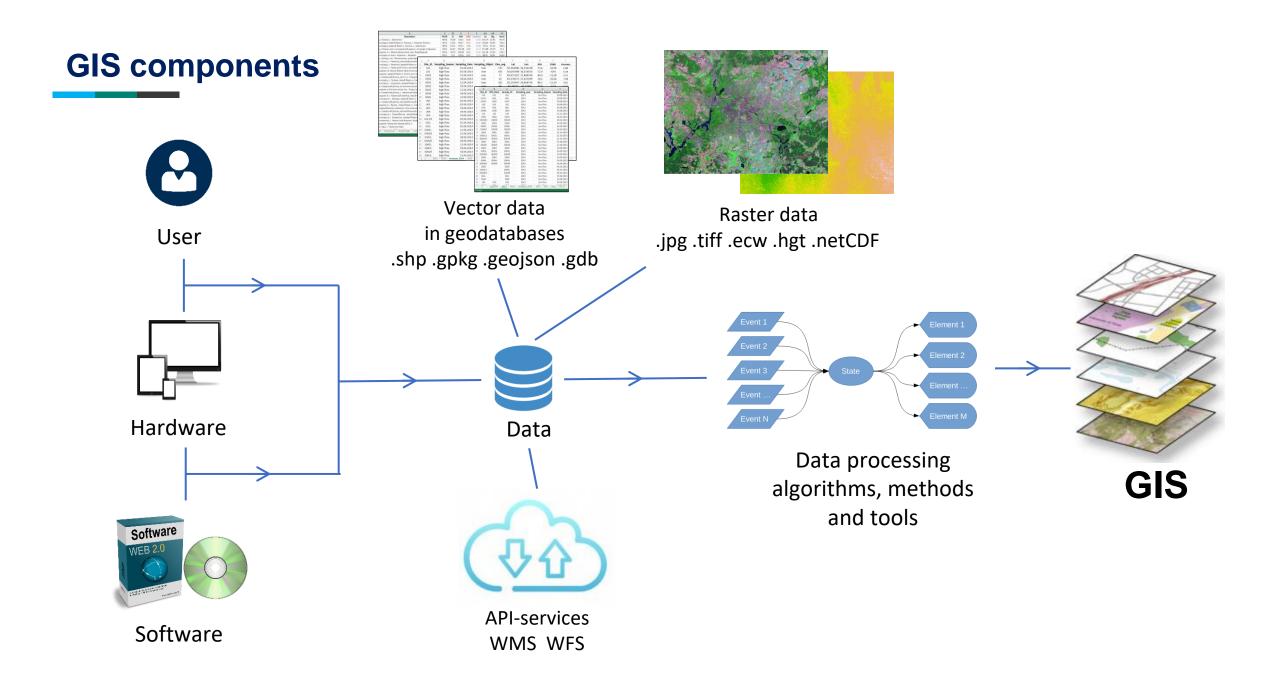
Dmytro Diadin

O. M. Beketov National University of Urban Economy in Kharkiv, Ukraine


ClimEd 7th Training (onsite/ hybrid) Developing Skills to Use Climatic Information and Services for Various Climate-Dependent Branches of Economy


> 7-11 April 2025 Vila-Seca, Tarragona, Spain

Why do we apply Geographical Information Systems – GIS?



Simulation and visualization of real world – mapping

Geospatial analysis and modelling

GIS software

Web-GIS applications

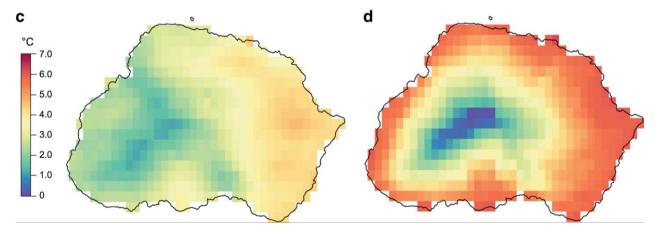
Desktop GIS applications

Climate data in GIS

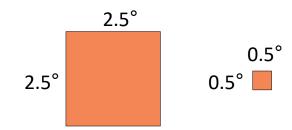
What is special about climate data?

- continuous in space and time
- global to local scales
- diversity of climate indicators
- majority of indicators are derived from other indicators

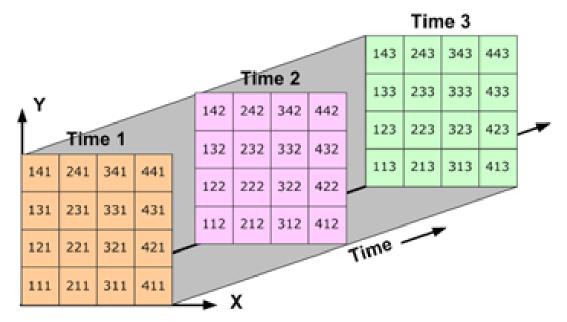
Climate data = Big data


Data massiveness is a challenge

- historical, future, calculated change
- hourly / daily / monthly / annual timescales
- sources observations, reanalysis, modelling
- up to 10 basic climate indicators and numerous ones derived from
- 120+ climatic models
- up to 5 GHG emission future scenarios
- uncertainty and incompleteness issues


Climate data in GIS

In GIS, climate data are stored as **raster data** (.geotiff,)


Spatial resolution varies from2.5 degrees (coarse) to 0.5 degree (fine)

https://www.nature.com/articles/sdata2018177/figures/1

Multidimensional rasters **NetCDF** (Network Common Data Form) – for massive climate data storage

https://desktop.arcgis.com/en/arcmap/latest/manage-data/netcdf/fundamentals-of-netcdf-data-storage.htm

Climate data in GIS


Single NetCDF file can store several **variables** (i.e. min, mean and max temperature) in **dimensions** of time (i.e. daily for 30 years) and space (X, Y)

Each time band of each variable can be extracted as a separate raster layer.

All layers in NetCDF rasters can undergo calculations in **Raster calculator** to generate new rasters (i.e. to calculate the difference between mean temperature of past and future)

🔇 *GIS_climate — QGIS	
Project <u>E</u> dit <u>V</u> iew <u>Layer</u> <u>Settings</u> <u>Plu</u>	ugins Vect <u>or R</u> aster <u>D</u> ataba
🗋 📄 🖥 🔍 Layer Properties - tmax.	.2m.4Xday.1981-2010.ltm — tmax
🖳 😪 V a	Band Rendering
Information	Render type Singleband pseudoco
Browser Source	Band
	Min
Symbology	Min / Max Value Settings
 ☆ Favorites ▶ I Spatial Boo I Transparency 	Interpolation
 Project Ho Home Histogram 	Color ramp
Home Histogram D C:\	Label unit suffix
Chamy Rendering Aleman	Label precision
audio_c Temporal	Value Color
Berner Books Pyramids	203,0400085
Camera Coachir Elevation Confide	203,4932473
English Metadata	203,9464746
Layers Legend	
🗸 🏨 🔍 🕇 🤛 Display	204,3997134
✓ • Vecto	Mode Continuous 💌
Attribute Tables	Classify 🖶 📼
Ukr_a	
Vecto Vecto	Clip out of range values
ukr_a	Layer Rendering
Tmax	
 Vecto Tmax. 	Blending mode Normal
▼ ✓ ¥ tmax.	Brightness
Band 0458	
	Style *
Q Type to locate (Ctrl+K)	Coordinate 2417263 60040

and 0437: time=-15767136 (hours since 1800-01-01 00:00:0.0) and 0438: time=-15767130 (hours since 1800-01-01 00:00:0.0 and 0439: time=-15767124 (hours since 1800-01-01 00:00:0.0) and 0440: time=-15767118 (hours since 1800-01-01 00:00:0.0 and 0441: time=-15767112 (hours since 1800-01-01 00:00:0.0) and 0442: time=-15767106 (hours since 1800-01-01 00:00:0.0 and 0443: time=-15767100 (hours since 1800-01-01 00:00:0.0 and 0444: time=-15767094 (hours since 1800-01-01 00:00:0.0) and 0445: time=-15767088 (hours since 1800-01-01 00:00:0.0) and 0446: time=-15767082 (hours since 1800-01-01 00:00:0.0) and 0447: time=-15767076 (hours since 1800-01-01 00:00:0.0) and 0448: time=-15767070 (hours since 1800-01-01 00:00:0.0) and 0449: time=-15767064 (hours since 1800-01-01 00:00:0.0 and 0450: time=-15767058 (hours since 1800-01-01 00:00:0.0) and 0451: time=-15767052 (hours since 1800-01-01 00:00:0.0 and 0452: time=-15767046 (hours since 1800-01-01 00:00:0.0) and 0453: time=-15767040 (hours since 1800-01-01 00:00:0.0) and 0454: time=-15767034 (hours since 1800-01-01 00:00:0.0) and 0455: time=-15767028 (hours since 1800-01-01 00:00:0.0) and 0456: time=-15767022 (hours since 1800-01-01 00:00:0.0) and 0457: time=-15767016 (hours since 1800-01-01 00:00:0.0 d 0458: time=-15767010 (hours since 1800-01-01 00:00:0.0) and 0459: time=-15767004 (hours since 1800-01-01 00:00:0.0) and 0460: time=-15766998 (hours since 1800-01-01 00:00:0.0) and 0461: time=-15766992 (hours since 1800-01-01 00:00:0.0) and 0462; time=-15766986 (hours since 1800-01-01 00:00:0.0) and 0463: time=-15766980 (hours since 1800-01-01 00:00:0.0) and 0464: time=-15766974 (hours since 1800-01-01 00:00:0.0) and 0465: time=-15766968 (hours since 1800-01-01 00:00:0.0) and 0466: time=-15766962 (hours since 1800-01-01 00:00:0.0) and 0467: time=-15766956 (hours since 1800-01-01 00:00:0.0) and 0468: time=-15766950 (hours since 1800-01-01 00:00:0.0 and 0469: time=-15766944 (hours since 1800-01-01 00:00:0.0) and 0470: time=-15766938 (hours since 1800-01-01 00:00:0.0) and 0471: time=-15766932 (hours since 1800-01-01 00:00:0.0) and 0472: time=-15766926 (hours since 1800-01-01 00:00:0.0) and 0473: time=-15766920 (hours since 1800-01-01 00:00:0.0) and 0474: time=-15766914 (hours since 1800-01-01 00:00:0.0) and 0475: time=-15766908 (hours since 1800-01-01 00:00:0.0) and 0476: time=-15766902 (hours since 1800-01-01 00:00:0.0 and 0477; time=-15766896 (hours since 1800-01-01 00:00:0 (

How to handle climate geodata?

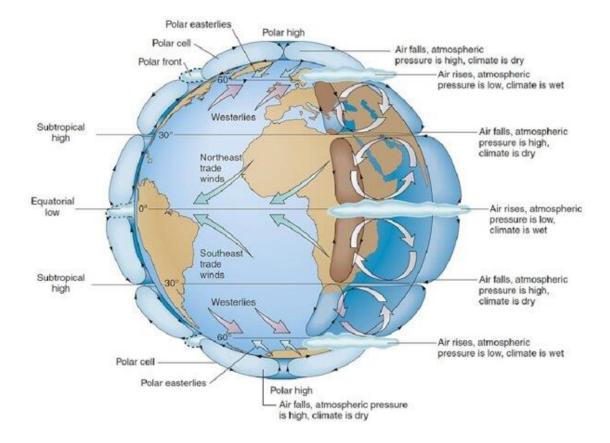
Ready-to-use web-applications

- Maps and dashboards in a web-browser providing climate data generation and visualization
- Easy tools to customize general options area or point location, selection for timeframes, indicators, scenarios
- No need of GIS skills

Geodata download portals

- Flexible system of climate indicators and other options/criteria selection
- A portal may have certain limitations regarding your requirements
- Needs for GIS software and basic skills in geodata visualisation

Development of your own rasters

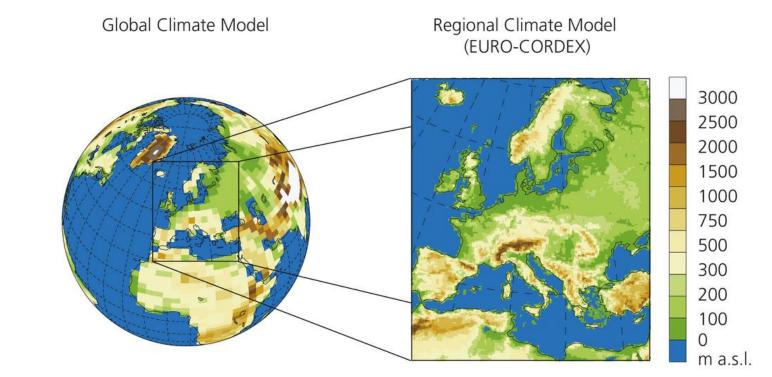

- Full freedom in developing climate indicators, areas and time frames
- Reasonable for local and regional scales
- Needs for deep knowledge and advanced skills in GIS

GIS application in climate science

Global circulation modeling (GCM)

• Simulate climate processes globally at different levels in the atmosphere and oceans

- Long-term modelling of past, present and future climate
- Spatial resolution 1.0 2.5 degrees


Leading GCM developers

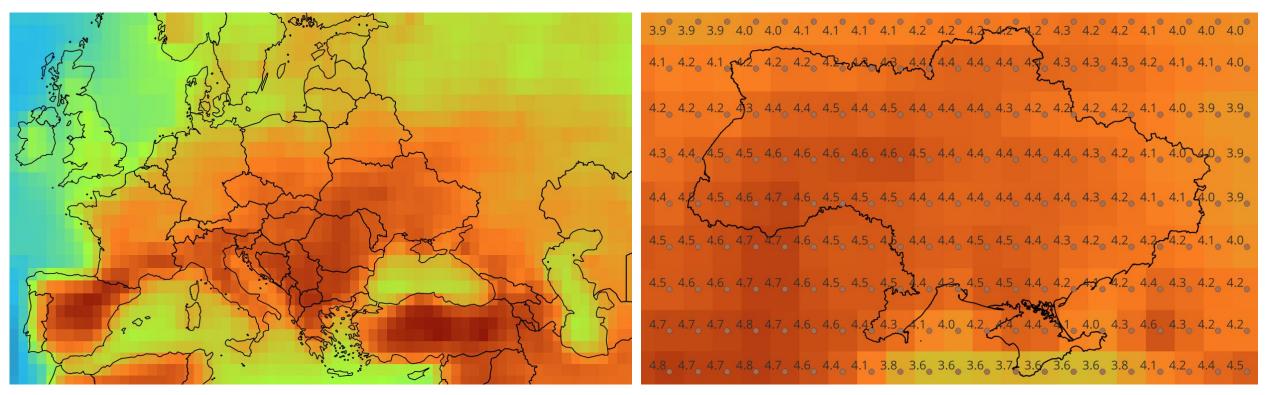
Institution	Model Name	Country
NASA GISS	GISS-E2	USA
NOAA GFDL	GFDL-CM4, GFDL-ESM4	USA
NCAR (CESM)	CESM	USA
UK Met Office Hadley Centre	HadGEM3, UKESM1	UK
ECMWF	EC-Earth	Europe
IPSL	IPSL-CM6A-LR	France
MPI-M	MPI-ESM1.2	Germany
СМСС	CMCC-CM2	Italy
BCC	BCC-CSM2-MR	China
MRI-JMA	MRI-ESM2.0	Japan

GIS application in climate science

Regional circulation modeling (RCM)

- Downscaled from GCM considering local topography, land use, vegetation and other
- Represent local effects and impacts of climate
- Spatial resolution 0.1 0.5 degrees and finer

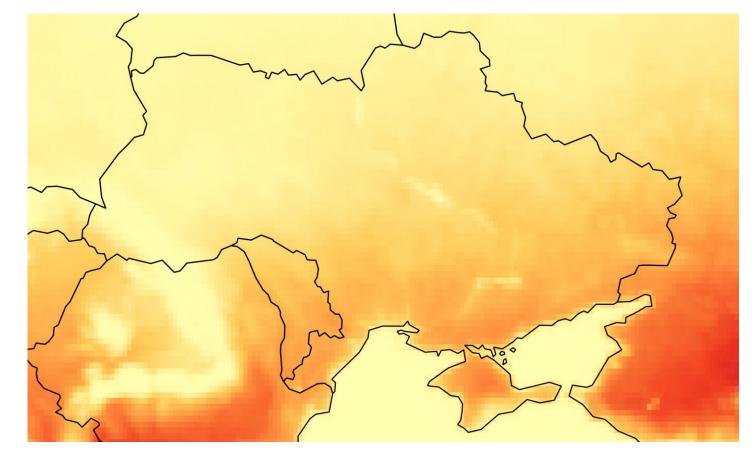
https://www.nccs.admin.ch/nccs/en/home/climate-change-and-impacts/swiss-climate-change-scenarios/understanding-climate-change-scenarios.html


Leading RCM developers

Institution	Model Name	Country
ICTP	RegCM	Italy
UK Met Office	PRECIS	UK
SMHI	RCA4	Sweden
CLM-Community	COSMO-CLM	Germany
NCAR	WRF	USA
EURO-CORDEX Consortium	RCA4, CLMcom, ALADIN, WRF, HIRHAM, and more	EU countries

Global Climate Models (GCMs)

Resolution range: 100–250 km (low-resolution)


Maximum of daily maximum temperature (°C) - CMIP6 - Change - rel. to 1850-1900 - SSP5-8.5 - (2041-2060) - Annual

Spatial resolution – 1.0 x 1.0 degrees (76 km x 110 km in WGS 84 / Pseudo-Mercator projection)

Regional Climate Models (RCMs)

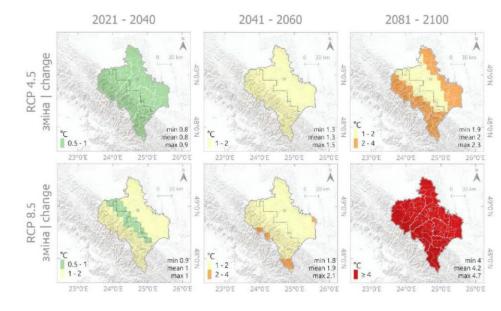
Days with maximum temperature above 35 °C (days) - CORDEX-EUR-11 - Change - rel. to 1981-2010 - RCP4.5 - (2041-2060) - Annual

Resolution range: 10–50 km (medium-resolution)

CORDEX (Coordinated Regional Climate Downscaling Experiment)

0.1 x 0.1 degrees 9 x 14 km (in WGS 84 / Pseudo-Mercator projection)

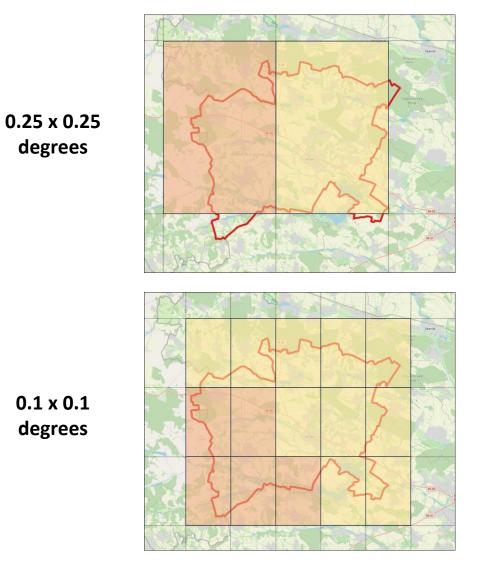
Data source: https://atlas.climate.copernicus.eu/atlas


Zakarpatska oblast

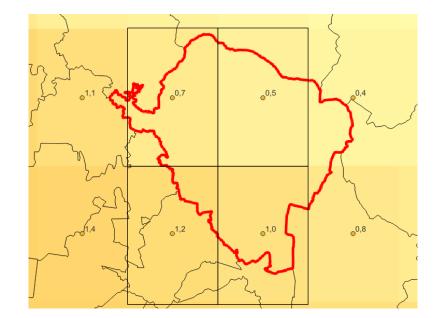
Days with maximum temperature above 35 °C (days) - CORDEX-EUR-11 - Change - rel. to 1981-2010 - RCP4.5 - (2041-2060) - Annual

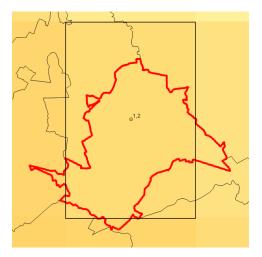
	•0,0 •0,1 •0,1 •0,1 •0,2 •0,2 •0,2 •0,3 •0,3 •0,3 •0,3 •0,3
	$ \bullet^{0,0} \begin{cases} 0,0 \\ \bullet^{0,0} \\ \bullet^{0,0} \\ \bullet^{0,0} \\ \bullet^{0,0} \\ \bullet^{0,0} \\ \bullet^{0,0} \\ \bullet^{0,1} \\ \bullet^{0,1} \\ \bullet^{0,2} \\ \bullet^{0,3} \\ \bullet^{0,3} \end{cases} $
	0,1 0,1 0,0 0,0 -0,0 0,0 0,0 0,1 0,1 0,1 0,1
	0,5 0,3 0,1 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 1,0 0,7 0,5 0,3 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
2	0,0 $0,0$
0 0 0 0 0 0	

Data source: https://atlas.climate.copernicus.eu/atlas

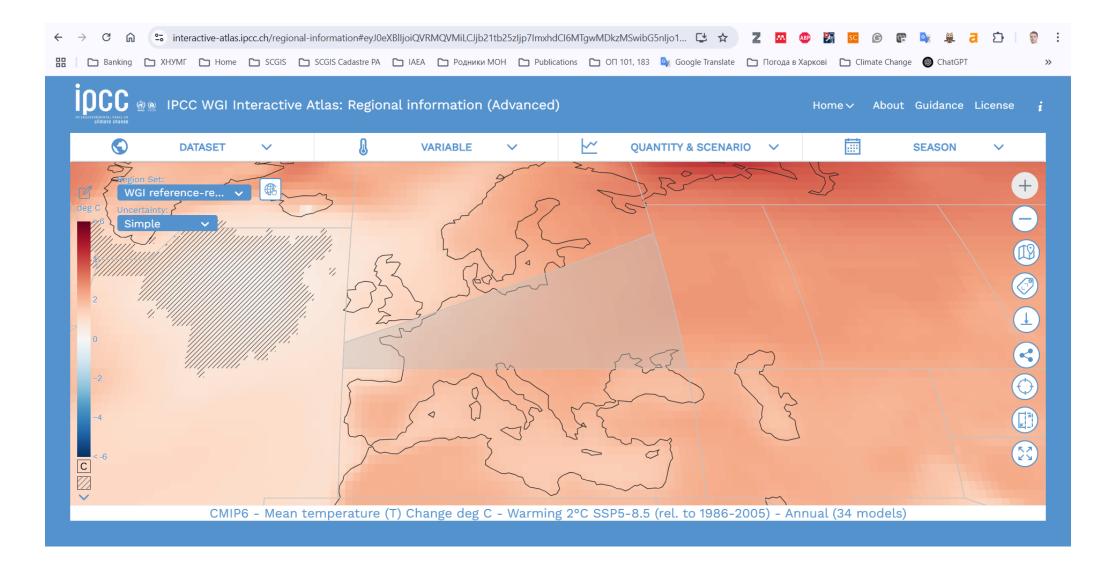

Ivano-Frankivska oblast

Data source: Climate change adaptation strategy for Ivano-Frankivsk region, 2024 (in Ukrainian)


Resolution of 0.1×0.1 degrees (9 x 14 km) is suitable for national and regional (oblast) scales.

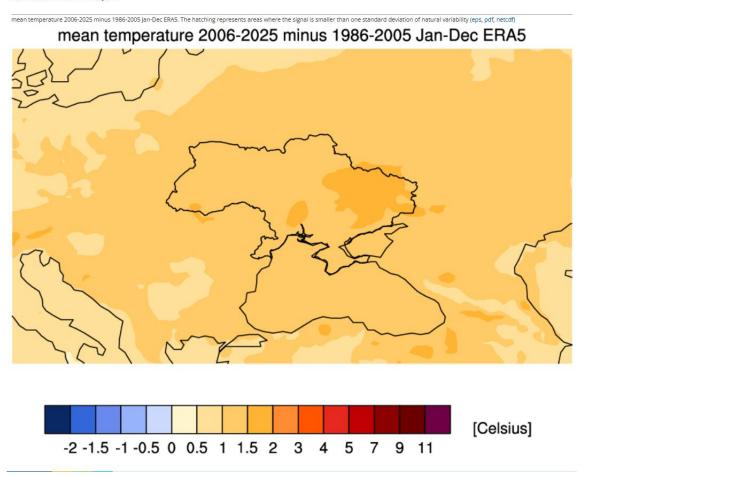

RCMs with such resolution are particularly effective in oblasts with rugged terrain like the Carpathian mountainous area.

For the local community level, the resolution of 0.1×0.1 degrees (9 x 14 km) may be reasonable if the community area is relatively large.


For relatively small areas further downscaling is needed – up to 30 seconds (1 km²).

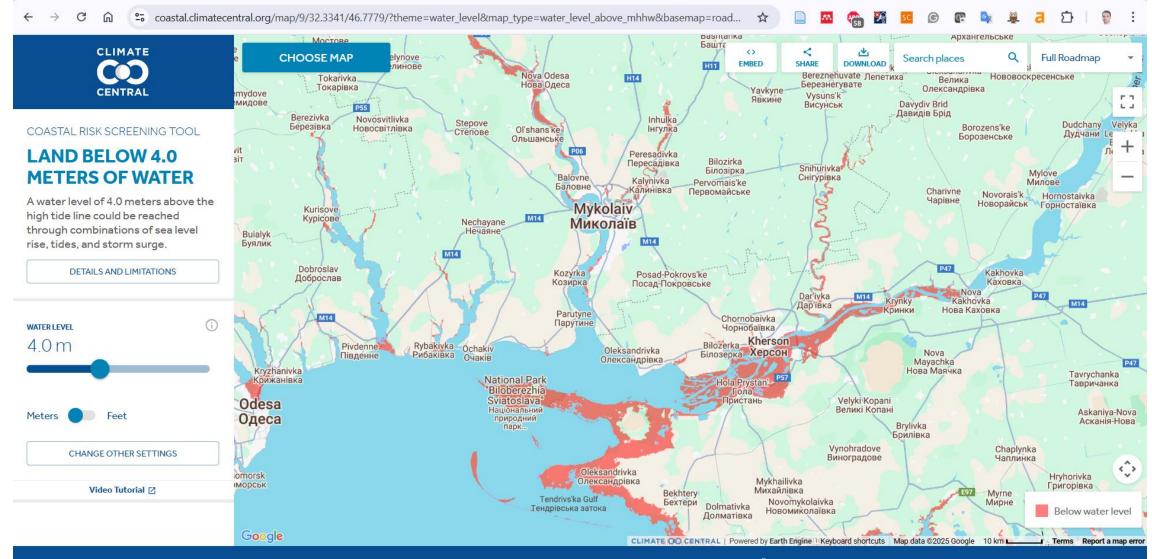
0.1 x 0.1 degrees

Ready-to-use GIS web-applications: IPCC WGI Interactive Atlas

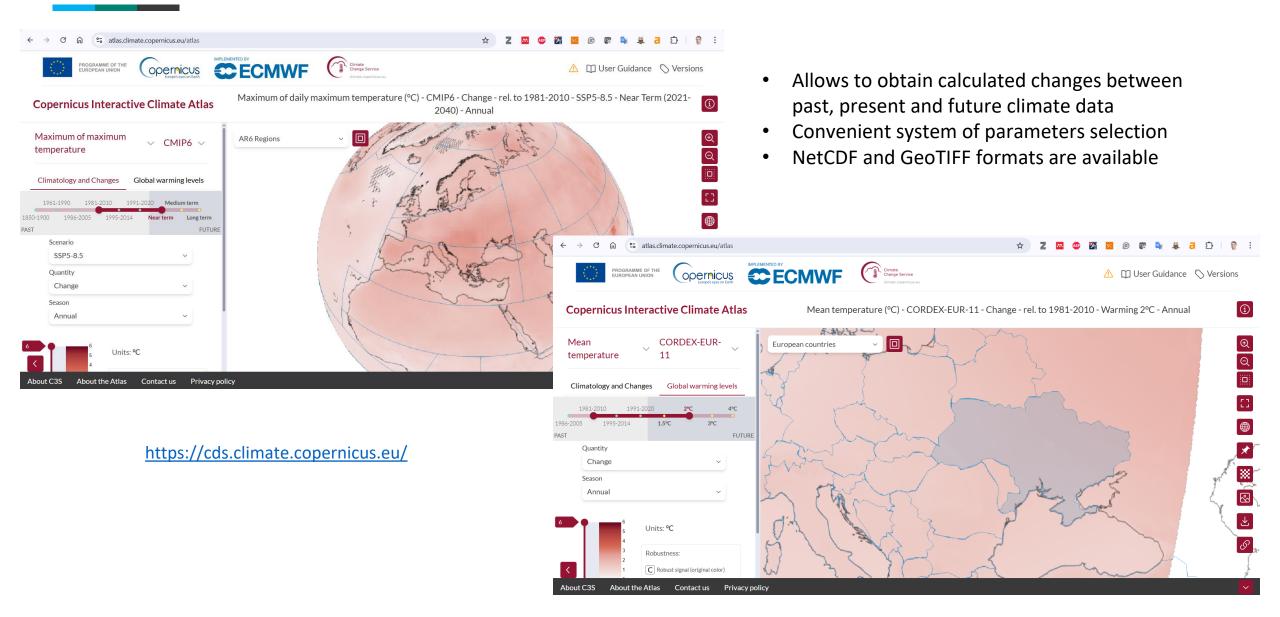


Ready-to-use GIS web-applications: KNMI Climate Change Atlas

 $\leftarrow \rightarrow C \square$ climexp.knmi.nl/plot_atlas_form_cmip6.py


२ 🛧 Z 🔤 🚇 🔀 🧧 🕲 😨 其 d 🖸 💱

File size created 178005 bytes.



https://climexp.knmi.nl/plot_atlas_form.py?id=someone@somewhere

Ready-to-use GIS web-applications: coastal risk screening tool

Portals for downloading raster climate data: Copernicus Interactive Climate Atlas

Portals for downloading raster climate data: Climate Data Store

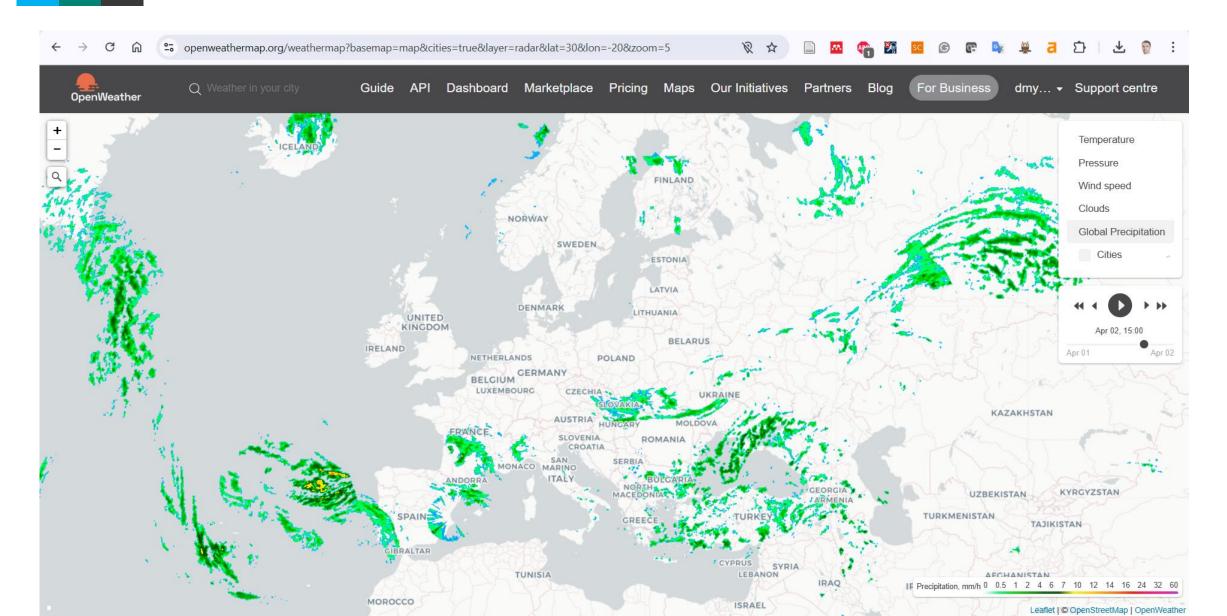

→ C බ 🖙 cds.climate.cop	ernicus.eu/datas	sets	🖈 Z 🖾 🙂 🛙	2 😨 🔍 🖳 🔁 🧊 🕲 🔤	
			IWF	 Nast list of climate variables Flexible system of parameter 	
Climate Data Store	Data	asets Applications	User guide Live Background	NetCDF format is available	
Warning 3 Apr 2025 Sys	tem is in degra	ded status due to issues on	the underlying infrastructure. Please follow status <u>here</u> or in our <u>forum</u>	< 1/3 >	
Datasets		Search			
				→ C A 🛱 cds.climate.copernicus.eu/datasets/reanalysis-era5-land-monthly-means?tab=download 👁 🖈	z 💀 🧶 🐹 🛯 🕲 🖉 🏶 🖉 🖉 I
		We found 121 results	Search on ADS	Climate Data Store Datasets Applications User guide Live Background	Your requests
Filter by Product type	^		ERA5 monthly averaged data on pressure levels from 1940 to p Updated today ERA5 is the fifth generation ECMWF reanalysis for the global climate and weath	Temperature ^ Select all	2019-06-23 Update date
 Climate indices Climate projections Derived reanalysis 	8 30 1		available from 1940 onwards. ERA5 replaces the ERA-Interim reanalysis. Reanal observations from across the world into a globally complete and consistent data Reanalysis Copernicus C35 Global Past Atmosphere (surface) Atmosphere	2m dewpoint temperature 2m temperature Skin temperature Soil temperature level 1 Soil temperature level 2 Soil temperature level 3 Soil temperature level 4	2025-04-06 Standard metadata
In-situ observations	13			Lakes	STAC 12
<u>h</u>	ttps://	cds.climate.	<u>copernicus.eu/</u>	Select all Lake bottom temperature Lake ice depth Lake mix-layer temperature Lake shape factor Lake mix-layer temperature Lake shape factor	Related datasets ERA5-Land post-processed daily statistics from 1950 to present ERA5-Land hourly data from 1950 to present
				Snow ^	
				Select all Snow albedo Snow cover Snow density Snow depth Snow depth water equivalent Snowfall Snowmelt Temperature of snow layer	Request validation Request size

Portals for downloading raster climate data: WorldClim

🐜 WorldClim					Home		 Maximum user-friendly and easy to use High spatial resolution data 		
Historical clima	te data				Historical climate data Historical monthly weather data		le in .geotiff format which is		
This is WorldClim version 2.1 climate data for 1970-2000. This version was released in January 2020.				leased in January	Future climate data	easier to handle	in GIS		
There are monthly climate data solar radiation, wind speed, wat "bioclimatic" variables.				and the second					
The data is available at the four minutes (~340 km2). Each dowr				,	← → C m = w	- orldclim.org/data/cmip6/cmip6_clim10m.html	🖈 🛛 🖾 🝩 🌌 🖻 🕼 📭 💺 리 🎦 💡		
each month of the year (January			g 12 Georni (.t	in) mes, one for					
variable	10 minutes	5 minutes	2.5 minutes	30 seconds		🜦 WorldClim	Home		
minimum temperature (°C)	tmin 10m	tmin 5m	tmin 2.5m	tmin 30s		Future climate 10 minutes spatial resoluti	OD Historical climate data		
minimum temperature (°C) maximum temperature (°C)	tmin 10m tmax 10m		tmin 2.5m tmax 2.5m	tmin 30s tmax 30s		Future climate, 10 minutes spatial resoluti	ON Historical climate data Historical monthly weather data		
		tmax 5m				- See the main page for background information and for other spatial resolutions. Downs	Historical monthly weather data aled Future climate data		
maximum temperature (°C)	tmax 10m	tmax 5m tavg 5m	tmax 2.5m	tmax 30s		-	Aled Historical monthly weather data Future climate data		
maximum temperature (°C) average temperature (°C)	tmax 10m tavg 10m	tmax 5m tavg 5m prec 5m	tmax 2.5m tavg 2.5m	tmax 30s tavg 30s		See the main page for background information and for other spatial resolutions. Downso monthly future climate data from CMIP6 is available in GeoTiff files for nine GCMs and for SSPs for the following time periods: 2021-2040, 2041-2060, 2061-2080, and 2081-2100. climate variables available are tn - monthly average minimum temperature (°C), tx - mor	Historical monthly weather data Future climate data Future climate data The thly		
maximum temperature (°C) average temperature (°C) precipitation (mm)	tmax 10m tavg 10m prec 10m	tmax 5m tavg 5m prec 5m srad 5m	tmax 2.5m tavg 2.5m prec 2.5m	tmax 30s tavg 30s prec 30s		See the main page for background information and for other spatial resolutions. Downso monthly future climate data from CMIP6 is available in GeoTiff files for nine GCMs and for SSPs for the following time periods: 2021-2040, 2041-2060, 2061-2080, and 2081-2100.	Historical monthly weather data Future climate data Future climate data The thly		
maximum temperature (°C) average temperature (°C) precipitation (mm) solar radiation (kJ m ⁻² day ⁻¹)	tmax 10m tavg 10m prec 10m srad 10m	tmax 5m 2 tavg 5m 2 prec 5m 2 srad 5m 2 wind 5m 2	tmax 2.5m tavg 2.5m prec 2.5m srad 2.5m	tmax 30s tavg 30s prec 30s srad 30s		See the main page for background information and for other spatial resolutions. Downs monthly future climate data from CMIP6 is available in GeoTiff files for nine GCMs and fo SSPs for the following time periods: 2021-2040, 2041-2060, 2061-2080, and 2081-2100. Climate variables available are tn - monthly average minimum temperature (°C), tx - mor average maximum temperature (°C), pr - monthly total precipitation (mm), and bc - bioc	Historical monthly weather data Future climate data Future climate data The thly		


average maximum tem variables.	perature (°C), p	r - monthly tot	al precipitation	(mm), and bc -
2021-2040				
GCM	ssp126	ssp245	ssp370	ssp585
ACCESS-CM2	tn, tx, pr, bc	tn, tx, pr, bc	tn, tx, pr, bc	tn, tx, pr, bc
BCC-CSM2-MR	tn, tx, pr, bc	tn, tx, pr, bc	tn, tx, pr, bc	tn, tx, pr, bc
CMCC-ESM2	tn, tx, pr, bc	tn, tx, pr, bc	tn, tx, pr, bc	tn, tx, pr, bc
EC-Earth3-Veg	tn, tx, pr, bc	tn, tx, pr, bc	tn, tx, pr, bc	tn, tx, pr, bc
FIO-ESM-2-0	tn, tx, pr, bc	tn, tx, pr, bc		tn, tx, pr, bc
GFDL-ESM4	tn, tx, pr, bc		tn, tx, pr, bc	pr
GISS-E2-1-G	tn, tx, pr, bc	tn, tx, pr, bc	tn, tx, pr, bc	tn, tx, pr, bc
HadGEM3-GC31-LL	tn, tx, pr, bc	tn, tx, pr, bc		tn, tx, pr, bc
1011 CL 45 C	1	1	1	1

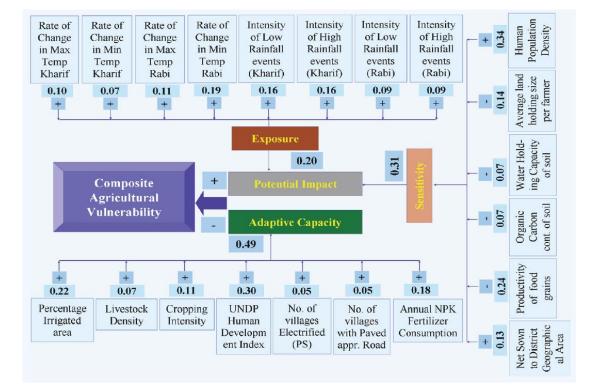
Portals for downloading raw observation data: UkrHydroMet Insitute


The dataset contains long gridded time series of monthly minimum, maximum and mean air temperature and atmospheric precipitation for Ukraine, covering the period of 1946-2020. The dataset was built through the thorough historical climate data processing, which included all mandatory steps: data rescue/digitization of missing values and/or periods in station time series from paper sources, their quality control and homogenization, and interpolation on 0.1°x0.1° grid. The station data comprised monthly values of 178 stations for air temperature (for each of three parameters) and 224 stations for atmospheric precipitation. The quality assurance and homogenization were performed by means of the widely used homogenization software HOMER (HOMogEnization in R), while the well-known interpolation software MISH (Meteorological Interpolation based on Surface Homogenized data basis) was used to perform the gridding.

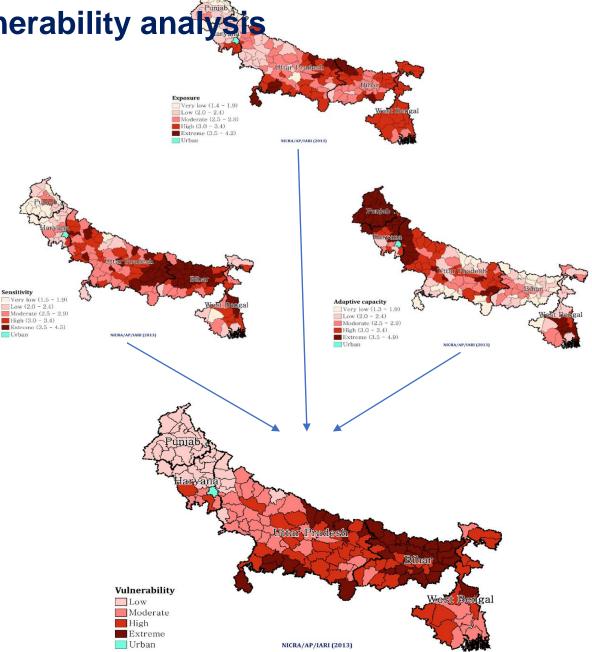
Portals for downloading raw observation data: NOAA

-

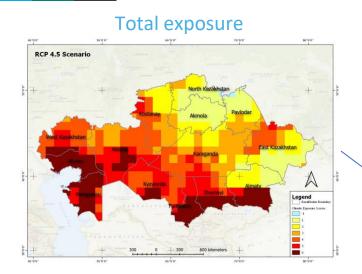
API services for retrieving climate data online: OpenWeatherMap

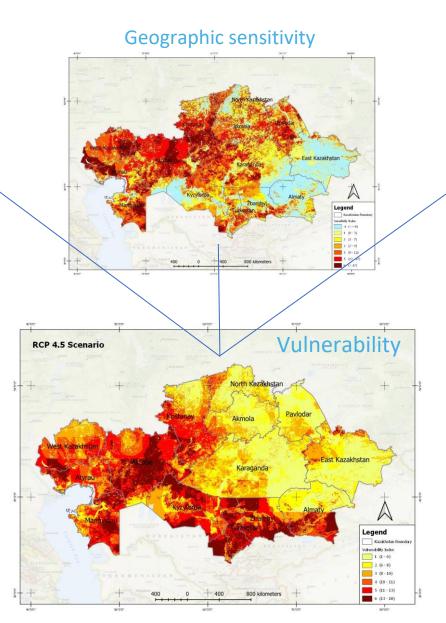

Practical usefulness of GIS application in climate services

- Understanding of spatial distribution and variability of climate indicators in a particular location
- Effective visualisation of climate change evidence, effects and consequences
- Identification of risk and vulnerability to climate change through geospatial analysis (overlay and proximity analysis, elevation and hydrologic modelling, etc)
- Selection and substantiation of relevant adaptation and mitigation measures

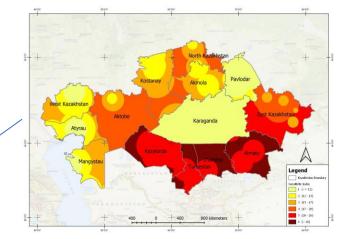

GIS application in climate risk and vulnerability analysis

Sensitivity

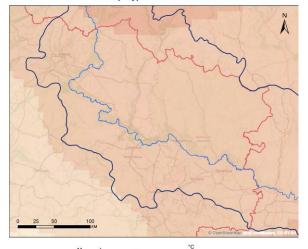

Urban



Sehgal V. et al. Vulnerability of Agriculture to Climate Change: District Level Assessment in the Indo-Gangetic Plains, IARI. 2013



GIS application in climate risk and vulnerability analysis


Socio economic sensitivity

Climate Change Adaptation in Kazakhstan, Climate Adaptation and Mitigation Program for the Aral Sea Basin (CAMP4ASB), 2021

GIS application in assessment of climate change in river basin

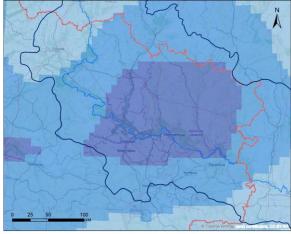
Зміна максимальної температури - RCP 4.5

Умовні позначення державний кордон — р. Сіверський Донець Зміна тривалості посухи - RCP 4.5

дні

0,3 - 2

2 - 3

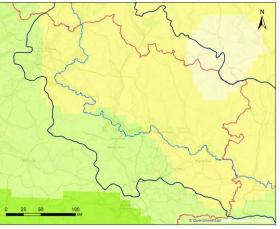

3 - 4

4 - 5

5 - 6

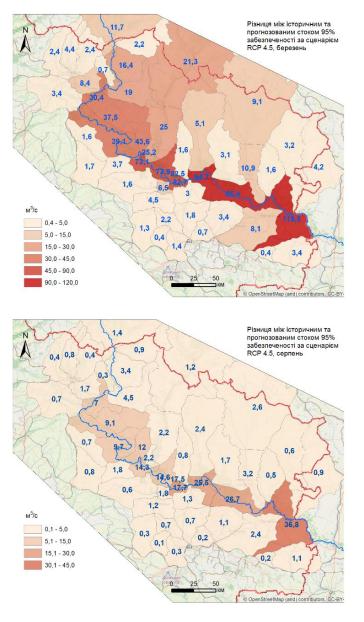
Ум	овні позначення	
	державний кордон	
-	— р. Сіверський Донець	
	басейн р. Сіверський Донець	

Зміна суми опадів - RCP 4.5


 Умовні позначення
 Зміна суми опадів - RCP 4.5

 державний кордон
 ММ

 р. Сіверський Донець
 9 - 15


 басейн р. Сіверський Донець
 15 - 20

Зміна тривалості періоду вегетації - RCP 4.5

Climate Change in Siv. Donets River basin: UNICEF project, 2021

